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1 Review of IA Groups

1.1 Definitions

We’ll start with some simple definitions covered in IA Groups

Definition. A group is a triple, (G, ◦, e) consisting of a set G, a binary operation ◦ :
G×G→ G and an identity element e ∈ G where we have the following three properties,
(i) ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c)
(ii) ∀a ∈ G, a ◦ e = e ◦ a = a
(iii) ∀a ∈ G, ∃a−1 ∈ G, a ◦ a−1 = a−1 ◦ a = e
We say that the order of the group (G, ◦, e) is the size of the set G

Proposition. Inverses are unique.

Proof. Basic algebraic manipulation, covered in Part IA Groups.

Definition. If G is a group, then a subset H ⊆ G is a subgroup if the following hold,
(i) e ∈ H
(ii) If a, b ∈ H then a ◦ b ∈ H
(iii) (H, ◦, e) forms a group.

Now we’ll give simple test for a subset being a subgroup

Lemma. A non-empty subset, H, of a group G is a subgroup if and only if ∀h1, h2 ∈ H
we have that h1h

−1
2 ∈ H

Proof. Again covered in Part IA Groups

Definition. A group G is abelian if ∀g1, g2 ∈ G we have that g1g2 = g2g1

Let’s look at some examples of groups.

(i) The integers under addition, (Z,+)

(ii) The integers modulo n under addition (Zn,+n)

(iii) The rational numbers under addition (Q,+)

(iv) The set of all bijections from {1, · · · , n} to itself with the operation given by functional
composition, Sn

(v) The set of all bijections from a set X to itself under functional composition is a group
Sym(X)

(vi) The dihedral group, D2n the set of symmetries of the regular n-gon

(vii) The general linear group over R, GL(n,R), is the set of functions from R → R which are
linear and invertible. Or we can think of the group as the set of n× n invertible matrices
under matrix multiplication. We can view this group as a subgroup of Sym(Rn)
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(viii) The subgroup of Sn which are even permutations, so can be written as a product of evenly
many transpositions, An

(ix) The subgroup of D2n which are only the rotation symmetries which is denoted by Cn

(x) The subgroup of GL(n,R) of matrices which have determinant 1 which is SL(n,R)

(xi) The Klein four-group, which is K4 = C2 ×C2, the symmetries of the non-square rectangle

(xii) The quaternions, Q8 with the elements {±1,±i,±j,±k} with multiplication defined with
ij = k, ji = −k, i2 = j2 = k2 = −1

1.2 Cosets

Definition. Let G be a group and g ∈ G. Let H be a subgroup of G. The left coset,
written as gH is the set {gh : h ∈ H}

Some observations we can make are,

(i) Since e ∈ H we have that g ∈ gH. So every element is in some coset

(ii) The cosets partition, so if gH ∩ g′H ̸= ∅ then gH = g′H

(iii) The function, f : H → gH defined by f(h) = gh is a bijection, so all cosets are the same
size

Theorem. (Lagrange’s Theorem) If G is a finite group, then for a subgroup H of G,
|G| = |H||G : H|, where |G : H| is the number of left cosets of H in G

Proof. Obvious from the observations we’ve just made.

Definition. Let G be a group, and take some element g ∈ G. We define the order of g
as the smallest positive integer n, such that gn = e. If no such n exists, we say the order
of g is infinite. We denote the order by ord(g).

Proposition. Let G be a group and g ∈ G. Then ord(g) divides |G|

Proof. Let g ∈ G. Consider the subset, H = {e, g, g2, · · · , gn−1} where n is the order of g. We
claim H is a subgroup. e ∈ H so H is non-empty. Observe that grg−s = gr−s ∈ H so we have
that H ≤ G. Elements are distinct since if gi = gj , i ̸= j, 0 ≤ i < j < n then gj − i = e which
contradicts the minimality of n since 0 ≤ j − i ≤ n. We have that |H| = n, so by Lagrange, |H|
divides |G|.

1.3 Normal subgroups

When does gH = g′H? Then g ∈ g′H, so we have that g′
−1

g ∈ H. The converse also holds.

Lemma. For a group G with g, g′ ∈ G and subgroup H we have that gH = g′H if and
only if g′

−1
g ∈ H
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Proof. In Part IA Groups

Let G/H = {gH : g ∈ G} be the set of left cosets. This partitions G. Does G/H have a natural
group structure?

We propose the formula that g1H · g2H = (g1g2) ·H for a group law on G/H.

We need to check well definedness of this proposed formula. Case 1: Suppose that g2H = g′2H.
Then g′2 = g2h for some h ∈ H. (g1H) ·(g′2H) = g1g

′
2H by the proposed formula. By the previous

relation this is g1g2hH = g1g2H.

Case 2: Suppose that g1H = g′1H we have that g′1 = g1h for some h ∈ H. We need g1g2H =

g1h︸︷︷︸
g′
1

g2H. Equivalently we need that (g1g2)
−1

g1hg2 ∈ H. Or equivalently still, g2
−1hg2 ∈ H for

all g2 and h. This is the definition of normality.

Definition. (Normality) A subgroup H ≤ G is normal if ∀g ∈ G, h ∈ H, we have that
ghg−1 ∈ H

If H ≤ G is normal we write that H ◁ G.

Definition. (Quotient) Let H ◁G. The quotient group is the set (G/H, ·, e = eH) where
· : G/H ×G/H → G/H by (g1H, g2H)→ (g1g2)H.

Definition. (Homomorphism) Let G and H be groups. A homomorphism is a function
f : G→ H such that for all g1, g2 ∈ G we have that f(g1g2) = f(g1)f(g2)

This is a very constrained condition. For example f(eG) = eH always. To see this, observe

eG = eGeG, so we have that f(eG) = f(eG)f(eG) so f(eG) = eH by multiplying by f(eG)
−1

.

Lemma. If f : G→ H is a homomorphism. Then f(g−1) = f(g)
−1

Proof. Calculate f(gg−1) in two ways.

In the first way f(gg−1) = f(e) = e, in the second way f(gg−1) = f(g)f(g−1).

Equating gives that f(g−1) = f(g)
−1

.

Definition. Let f : G → H be a homomorphism. The kernal of f is ker f = {g ∈ G :
f(g) = e}. The image of f is im f = {h ∈ H : h = f(g) for some g ∈ G}.

Proposition. Let f : G→ H be a homomorphism. Then ker f ◁ G and im f ≤ H.

Proof. First let’s proof that ker f is a subgroup by the subgroup test. Observe by the lemma that
e ∈ ker f.. If x, y ∈ ker f , then f(xy−1) = f(x)f(y)

−1
= e =⇒ xy−1 ∈ ker f . For normality, let

x ∈ G and g ∈ ker f . Calculate f(xgx−1) = f(x)f(g)f(x)
−1

. But f(g) = e. So we just get the
identity. Hence we have that xgx−1 ∈ ker f. So kerf ◁ G.
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To check that the im f ≤ H, take a, b ∈ im f , say that a = f(x), b = f(y). Then ab−1 =

f(x)f(y)
−1

= f(xy−1). But xy−1 ∈ G so f(xy−1) ∈ im f . Also e ∈ im f , so we have that
im f ≤ H.

Definition. (Isomorphism) A homomorphism f : G → H is an isomorphism if it is a
bijection. Two groups are called isomorphic if there exists an isomorphism between them.

Theorem. (First isomorphism theorem) Let f : G→ H be a homomorphism. Then ker f
is normal, and the function φ : G/ ker f → im f , by φ(g ker f) = f(g), is a well-defined,
isomorphism of groups.

Proof. Already shown ker f ◁ G. Consider whenever φ is well-defined. Suppose that g ker f =
g′ ker f. Need to check φ(g ker f) = φ(g′ ker f). We know that gg′

−1 ∈ ker f , so f(g′g−1) =
e ⇐⇒ f(g′) = f(g). To see that φ is a homomorphism: φ(g ker fg′ ker f) = φ(gg′ ker f) =
f(gg′) = f(g)f(g′) = φ(g ker f)φ(g′ ker f). So φ is a homomorphism.

Finally let’s check φ is bijective. First for surjectivity, let h ∈ im f , then h = f(g) for some g ∈ G.
So we have that h = φ(g ker f).

Now for injectivity, φ(g ker f) = φ(g′ ker f) =⇒ f(g) = f(g′) =⇒ g′g−1 ∈ ker f . Hence the
cosets are the same by the coset equality criterion, so we have that g ker f = g′ ker f , hence we
have injectivity, so φ is an isomorphism.

For an example of this theorem, consider the groups (C,+) and (C∗,×) related by the homo-
morphism, φ(z) = ez. The kernal of exp is exactly, 2πiZ ≤ C, so the first isomorphism theorem
gives that C

2πiZ
∼= C∗. (Try to visualise this!)

Theorem. (Second isomorphism theorem) Let H ≤ G and K ◁ G. Then HK = {hk :
h ∈ H, k ∈ K} is a subgroup of G, the set H ∩K is normal in H, and HK

K
∼= H

H∩K .

Proof. We take the statements in turn. First we can see that HK is a subgroup. Clearly it
contains the identity, and take some x, y ∈ HK, x = hk, y = h′k′. We will show that yx−1 ∈ HK.
Observe that yx−1 = h′k′k−1h−1 = h′(h−1h)(k′k−1)h−1 = (h′h−1)h (k′k−1)︸ ︷︷ ︸

k′′

h−1. But we have

that hk′′h−1 ∈ K by the normality of K, hence yx−1 ∈ HK. So we have that HK ≤ G.

Now we prove thatH∩K◁G. Consider the homomorphism, φ : H → G/K, defined as φ(h) = hK.
This is a well defined homomorphism for the same reason that the group structure G/K is well-
defined. The kernal of φ, is kerφ = {h : hK = K} = {h : h ∈ K} = H ∩K ◁ G.

Now finally we’re left to prove the isomorphism. Now apply the first isomorphism theorem to φ.
This tells us that H

kerφ = H
H∩K

∼= imφ. The image of the φ is exactly those coests of K in G that

can be represented as hK which is exactly HK
K .

Theorem. (Correspondence theorem). Consider a group G with K ◁G, with the homo-
morphism p : G→ G/K, by p(g) = gK. Then there is a bijection between the subgroups
of G which contain K and the subgroups of G/K.
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Proof. For some subgroup L, we have K ◁ L ≤ G, and we map L to L/K, so we have that
L/K ≤ G/K. In the reverse direction, for a subgroup A ≤ G/K, we map it to {g ∈ G : gK ∈ A}.
We can think of this as taking L→ p(L) and p−1(A)← A.

Now we will state some facts without proof. (Although the proofs are fairly straightforward).

(i) This is a bijection.

(ii) This correspondence maps normal subgroups to normal subgroups.

Theorem. (Third isomorphism theorem) Let K,L be normal subgroups of G with K ≤
L ≤ G. Then we have that G/K

L/K
∼= G

L .

Proof. Define a map φ : G/K → G/L, by φ(gK) = gL. First we’ll show that φ is a well-
defined homomorphism, then we’ll calculate the image and kernal, and finally apply the first
isomophism theorem. To see well-definedness, if gK = g′K, then g′g−1 ∈ K ⊆ L, so g′L = gL,
so φ is well-defined. Obviously a homomorphism.

The kernal of φ is kerφ = {gK : gL = L} = {gK : g ∈ L} = L/K. φ is clearly surjective, so we

conclude by the first isomorphism theorem that G/K
L/K

∼= G
L .

Definition. (Simple groups) A group G is called simple if the only normal subgroups
are G itself and {e}.

Proposition. Let G be an abelian group. Then G is simple if and only if G ∼= Cp, for p
prime.

Proof. If G ∼= Cp, then any g ∈ G, g ̸= e is a generator of G by Lagrange. Conversely if G is
simple and abelian, then take some non-identity, g ∈ G, then {gn : n ∈ Z} is a subgroup, and
because G is abelian, this subgroup is normal. Since g ̸= e, we must have G is cyclic, generated
by g. Now if G is infinitely cyclic, then G ∼= Z, which is not simple since 2Z ◁Z, so we can’t have
this. Therefore G ∼= Cm for some m ∈ Z>0. Say q divides m, then the subgroup of G generated
by g

m
q is a normal subgroup, so we must have that q = m or q = 1 by simplicity, hence we have

that m is prime.

Theorem. (Composition series) Let G be a finite group. Then there exists subgroups
such that, G = H1 ▷ H2 ▷ H3 ▷ · · · ▷ Hn = {e}, such that Hi

Hi+1
is simple.

Proof. If G is simple then take H2 = {e} and we’re done. Otherwise, let H2 be a proper normal
subgroup of maximal order in G. We claim that G/H2 is simple. To see this, suppose not and
consider φ : G → G/H2. By non-simplicity and correspondence between normal subgroups, we
find a proper normal in G/H2 and therefore a proper normal K◁G. This leads to a contradiction
as K contains H2 non-trivally, so we contradict maximality, so G/H2 is simple. Now we continue
by replacing G with H2 and iterate the process. Either we get that H2 simple and we’re done
again, or we get find a proper normal subgroup H3 ◁ H2 of maximal order. This process must
terminate, since G is finite and the order is strictly decreasing in each step.
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We know from Part IA groups that A5 is simple. We see a series like this for S5, namely,
S5 ▷ A5 ▷ {e}.

1.4 Groups actions and permutations

Definition. Let X be a set. Let Sym(x) denote the symmetric group of X and Sn =
Sym([n]) where we have that [n] = {1, 2, . . . , n}.

Reminders from IA Groups:

(i) We can write any σ ∈ Sn as a product of disjoint cycles.

(ii) If σ ∈ Sn we can write σ as a product of transpositions. The number of transpositions
needed to write σ is well-defined modulo 2. This is called the sign of the transposition,
denoted by sgn, where sgn : Sn → {±1}.

(iii) sgn is a homomorphism between the groups where {±1} is given the unique group structure.
When n ≥ 3, the homomorphism is surjective.

Definition. (Alternating group) The alternating group An is the kernal of sgn.

A homomorphism φ : G→ Sym(X) is called a permutation representation of G.

Definition. (Group action) An action of G on a set X is a function τ : G × X → X
sending (g, x) → τ(g, x) ∈ X such that τ(e, x) = x, ∀x ∈ X, and τ(g1, τ(g2, x)) =
τ(g1g2, x),∀g1g2 ∈ G,∀x ∈ X.

How are actions and permmutation representations related?

For some homomorphism, φ : G→ Sym(X) we map the homomorphism to a(φ) : G×X → X,
where (g, x)→ φ(g)(x).

Proposition. The funtion a above is a bijection from the set of homomorphism from
G→ Sym(X) to the set of actions from G on X.

Proof. We’ll construct an inverse of a. Given a group action ∗ : G × X → X. Define φ(∗) :
G → Sym(X) defined by sending g → φ(∗)(g), where φ(∗)(g)(x) = g ∗ x. We aim to show
that φ(∗)(g) : X → X is a permutation. We have an inverse φ(∗)(g−1), and to see that it is a
homomorphism φ(∗)(g1)φ(∗)(g2)(x) = g1 ∗ (g2 ∗ x) = (g1g2) ∗ x = φ(∗)(g1g2)(x). This is true for
all x, so the construction is a group homomorphism.

Notation: Given a group action G acting on X given by φ : G→ Sym(X), denote GX = im(φ),
and GX = ker(φ). By the first isomorphism theorem we have that GX ◁ G and G/GX

∼= GX .

For an example, consider the unit cube. Let G be the its symmetric group. Now let X be the set
of (body) diagonals of the cube. Any element of G sends a diagonal to another diagonal, we get
an action G→ Sym(X) ∼= S4. The kernal GX = ker(φ) = {e, send each vertex to its opposite}.
Easy exercise to check that any diagonal can be sent to any other diagonal, so GX = im(φ) =

Sym(X). So by the first isomorphism theorem, we have that S4
∼= GX ∼= G/GX =⇒ |G|

2 =
4! =⇒ |G| = 48.
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For the next example let’s look at a group acting on itself. Let G act on itself by G × G → G,
sending (g, g1) → gg1. This gives a homomorphism G → Sym(G) (easy to check that φ is
injective since the kernal is trival). By the first isomorphism theorem we get that every group is
isomorphism to a subgroup of a symmetric group (Cayley’s theorem).

Now let H ≤ G and let X = G/H, let G act on X by g ∗ g1H = gg1H. We get φG→ Sym(X).
Consider GX = kerφ. If g ∈ GX , then gg1H = g1H,∀g1 ∈ G, so g1

−1gg1H = H =⇒ GX ⊆⋂
g1∈G g1Hg1

−1. This argument is completely reversible, so if g ∈
⋂

g1
g1Hg−1

1 , then for each

g1 ∈ G, we have g1
−1gg1 ∈ H, so g ∈ GX =⇒ GX =

⋂
g1∈G g1Hg1

−1. Since GX is a kernal and
is a subset of H, we’ve got a way of making H smaller and making it normal. This is the largest
normal subgroup contained in H.

Theorem. Let G be finite and H ≤ G of index n. There exists a normal subgroup of
G, K ◁ G, with K ≤ H, such that G/K is isomorphic to a subgroup of Sn. Thus, |G/K|
divides n!, and |G/K| ≥ n.

Proof. Consider G acting on G/H in the previous example. So the kernal of φ : G→ Sym(G/H)
is normal, denote it by K. We’ve shown it is contained by H. First isomorphism theorem gives
that G/K ∼= im(φ) ≤ Sym(X) ∼= Sn. Give that |G/K| divides n! by Lagrange. Since thatK ≤ H,
we have that |G/K| ≥ |G/H| =⇒ |G/K| ≥ n.

Corollary. Let G be non-abelian and simple. Let H ≤ G be a proper subgroup of index
n > 1. Then G is isomorphism to a subgroup An. Moreover, n ≥ 5, i.e. no subgroup of
index less than 5.

Proof. Action of G on the set X = G/H gives a homomorphism φ : G → Sym(X) ∼= Sn. Since
the kernal is normal, since G is simple it is either G or {e}. Since H is a proper subgroup, for
some g ∈ G, gH ̸= H, so we must have that kerφ = {e}. So G ∼= imφ ≤ Sn. Now we want
to show that imφ ≤ An. To see this observe that An ◁ Sn. Consider An ∩ imφ ≤ imφ. By the
second isomorphism theorem, imφ ∩An ◁ imφ =⇒ imφ ∩An = {e} or imφ itself. By the rest
of the second isomorphism theorem, if imφ ∩ An = {e} =⇒ imφ ∼= imφ

imφ∩An

∼= imφAn

An
≤ Sn

An

∼=
C2, but G is non-abelian, so imφ is non-abelian, so we have a contradiction. So we have that
imφ ∩An = imφ, so imφ is a subgroup of An.

For the next part of the corollary, S1, S2 are abelian and S3, S4 have no non-abelian simple
subgroups, so we must have n ≥ 5.

Definition. (Orbits and stabiliser) Let G act on some set X. Then, the orbit of x ∈ X
is G · x = orbx = {gx : g ∈ G} ⊆ X. And the stabiliser of x ∈ X is Gx = stabG(x) =
{g ∈ G : gx = x} ≤ G.

Theorem. (Orbit-stabiliser) For a group G acting on a set X. For all x ∈ X, there
is a bijection G · x → G/Gx given by g · x → gGx. In particular, if G is finite, then
|G| = |G · x||Gx|, ∀x ∈ X.

Proof. In the IA Groups course.
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1.5 Conjugacy, centralisers, and normalisers

Let G be a group. The conjugation action of G acting on itself by G×G→ G, is (g, h)→ ghg−1.
This is equivilent to a homomorphism G→ Sym(G).

Fix g ∈ G. Then the permutation G→ G given by h→ ghg−1 is also a homomorphism.

Definition. (Automorphism) Let G be a group. A permutation G → G that is also
a homomorphism is called an automorphism of G. The set of all automorphisms of G,
Aut(G) = {f : G → G : f is a automorphism} ⊆ Sym(G), is a subgroup, called the
automorphism group of G.

Definition. (Conjugacy classes and centralisers) Fix g ∈ G. The conjugacy class of g is
the set cclG(g) = {hgh−1 : h ∈ G}, i.e it is the orbit under the conjugation action. The
centraliser of g ∈ G is CG(g) = {h ∈ G : hgh−1 = g}, i.e the stabiliser of g under the
action.

Definition. (Centre) The centre of G is Z(G) = {z ∈ G : hzh−1 = z∀h ∈ G}, i.e. it is
the kernal of the conjugation action and the intersection of the centralisers.

Corollary. Let G be a finite group. Then | cclG(x)| = |G : CG(x)| = |G|
|cG(x)| .

Proof. Apply orbit-stabiliser to the conjugation action.

Definition. (Normaliser) Let H ≤ G. The normaliser of H in G is NG(H) = {g ∈ G :
gHg−1 = H}

We can see clearly that H ⊆ NG(H) so NG(H) is non-empty and we also have that NG(H) ≤ G.

In fact we have that NG(H) is the largest subgroup containing H in which H is normal.

1.6 Simplicity of An for n ≥ 5

Recall from Part IA groups that a conjugacy class in Sn consists of the set of all elements with
a fixed cycle type.

Theorem. Let n ≥ 5. Then An is simple.

Proof. We will prove the statement via these three claims:

(i) An is generated by 3-cycles

(ii) If H ◁ An that contains a 3-cycle then it contains all the 3-cycles

(iii) Any non-trival H ◁ An contains a 3-cycle.

First we prove the first claim. Let g ∈ An, when viewed in Sn it is the product of evenly many
transposition. Consider a product of two transpositions:
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(i) (ab)(ab) = e ∈ An

(ii) (ab)(bc) = (abc) ∈ An

(iii) (ab)(cd) = (acb)(acd) ∈ An.

In each case we can write all products of transpositions as a product of 3-cycles, hence we can
write all elements in An as a product of 3-cycles.

Now for the second claim, any two 3-cycles in An are conjugate when viewed in Sn. Let δ, δ
′ be

3-cycles and write δ′ = σδσ−1, where σ ∈ Sn. If σ is even, we’re done since it’s in An. If σ is
odd, observe since n ≥ 5, there exists a transposition τ disjoint from δ, now δ′ = σ(ττ−1)δσ−1 =

(στ)δ(στ)
−1

. Since στ is even, we’re done.

Finally for the last claim take some H ◁ An not trival. We break into cases

(i) (a) If H contains an element on the form σ = (12 · · · r)τ where τ is disjoint from 1, . . . , r,
and r ≥ 4. Then let δ = (123). Now consider δσδ−1 ∈ H (by normality). But then
σ−1δ−1σδ ∈ H as well. As τ misses 1, 2, 3 and commutes with (12 · · · r) we expand this:
σ−1δ−1σδ = (r · · · 21)(132)(123 · · · r)(123) = (23r) so we find a 3-cycle.

(ii) (b) Suppose H contains σ = (123)(456)τ (or any relabeling of such). τ is disjoint from
1, · · · , 6. Take δ = (124) and calculate the conjugation σ−1δ−1σδ = (124236) which is a
5-cycle so we’re done by the first case.

(iii) (c) Suppose that H contains σ of the form σ = (123)τ where τ is a product of disjoint
transpositions. Note if τ contains anything longer than a tranposition, we can just apply
case (a) or (b). Then σ2 = (123)2 which is a 3-cycle since the transpositions cancel.

(iv) (d) Suppose that H contains σ = (12)(34)τ , where τ is a product of transpositions. Let
δ = (123), consider µ = σ−1δ−1σδ = (14)(23). Let ν = (152)µ(125) = (13)(45). But
observe that µν ∈ H, but this is a 5-cycle, so we’re done by case (a).

Up to relabeling, we’re covered all the cases. Hence any normal subgroup of A5 must be trivial
or A5 itself, so A5 is normal.

1.7 Finite p-groups

Definition. (Finite p-groups) For p prime, a finite p-group is a group of order pn, n ∈ N.

Theorem. Let G be a finite p-group. Then Z(G) is non-trival.

Proof. Consider G acting on itself by conjugation. The centre of G is the union of orbits of size
1. The orbits partition G, so

|G| = pn = |Z(G)|+
∑

sizes of conjugacy classes of size > 1

We know that the sizes of the non-trivial conjugacy classes always divide pn. So all the terms of
size larger than one are divisible by p. Hence we have that p divides |Z(G)|. So since p ≥ 2, the
centre is non-trivial.
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Theorem. A group of size p2 must be abelian.

Proof. Follows from an independently interesting technical result:

Lemma. If G is any group and G
Z(G) is cyclic, then G is abelian.

Proof. Let xZ(G) generate G
Z(G) . Every coset of the form xmZ(G),m ∈ Z. Since any g ∈ G lies in

some coset of Z(G), we can write g = xmz, for some z ∈ Z(G). Now for some g′ ∈ G, g′ = xnz′,
so gg′ = xmzxnz′ = xn+mzz′ = xnz′xmz = g′g, so the group is abelian.

Our proof of the theorem follows since Z(G) is non-trivial, so it either has size p2 or p. If it has
size p2, the group is abelian so we’re done. If it has size p, the G/Z(G) also has size p, so it’s
cyclic, hence it’s abelian, so by the lemma we have that G is abelian.

Theorem. Let G be a group of size pn. Then for any 0 ≥ k ≥ n, G has a subgroup of
size pk.

Proof. (Inductive proof) The base case n = 1 is clear because the group must be cyclic. Now
suppose that n > 1, if k = 0, we take {e}, so we’re done, so assume that k ≥ 1. Note that Z(G)
is non-trivial, let x ∈ Z(G) with x ̸= e. The order of x is a power of p. By raising x to some
power we can find an element with order p in Z(G). Replacing x with this element we can assume
ord(x) = p. The subgroup generated by x is normal of size p because x is central of order p. Now
G
⟨x⟩ is a group of order pn−1 so inductive hypothesis allies. Let L ≤ G

⟨x⟩ of size pk−1. But by the

subgroup correspondence result, we can find some K ≤ G containing ⟨x⟩ such that K
⟨x⟩ = L. So

K has size pk, so we’re done.

1.8 Finite abelian groups

Theorem. (Classification of finite abelian groups) Let G be a finite abelian group. There
exists positive integers d1, · · · , dr such that:

G ∼= Cd1 × Cd2 × · · · × Cdr

Moreover, we can choose di such that di+1 | di in which case this is unique.

Proof. To come later...

Abelian groups of order 8 are exactly C8, C4 × C2, C2 × C2 × C2.

Lemma. (Chinese remainder theorem) If n and m are coprime, then Cn × Cm
∼= Cnm

Proof. Consider Cn×Cm. Suffices to produce an element of order nm. Let g ∈ Cn and h ∈ Cm be
generators of order n and m respectively. Consider (g, h). Say its order is k =⇒ (g, h)k = (e, e).
So n,m both divide k, and since n,m are coprime we have that nm divides k and by Lagrange
we have that k divides nm, so we’re done.
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1.9 Sylow Theorems

Definition. (Sylow p-subgroup) Let G be a finite group of order pam, where p ∤ m, p is
a prime. Then a Sylow p-subgroup of G is a subgroup of size pa.

Theorem. (Sylow theorems) For a finite group G of order pam, where p ∤ m, p is prime:
(i) The set Sylp(G) = {P ≤ G | P is a Sylow p-subgroup of G} is non-empty.
(ii) Any H,H ′ ∈ Sylp(G) are conjugate, namely H = gH ′g−1, for some g ∈ G.
(iii) If np = |Sylp(G)| then np ≡ 1 mod p and np divides |G|, so np | m

Before we prove the statement, let’s see why this theorem is useful.

Lemma. If Sylp(G) = {P}, then P is normal in G.

Proof. For any g ∈ G, the subgroup gPg−1 is isomorphic (as a group) to P . So gPg−1 is in
Sylp(G) =⇒ gPg−1 = P , which proves the claim.

Corollary. Let G be a non-abelian simple group, and p | |G|, p prime. Then |G| divides
np!
2 and np ≥ 5.

Let G act by conjugation on Sylp(G) which gives a homomorphism φ : G→ Sym(Sylp(G)) ∼= Snp
.

By simplicity, kerφ = G or {e}. If kerφ = G, then gPg−1 = P for all g ∈ G and all P ∈ Sylp(G).
So P is normal. Thus P is either {e} or G. Well P is Sylow-p so it can’t be {e}, so P = G. So G
would be a p-group. But from earlier, the centre of G is non-trivial proper since G is non-abelian,
but the centre is always normal, so this contradicts simplicity, hence kerφ = {e}. So we have that
φ is an injective homomorphism G→ Snp , so by the first isomorphism theorem, G ∼= imφ. We’ll
show that φ lands in Anp

. Consider the composition G → Snp
→ {±1}. If this composition is

surjective, then ker(sgn◦φ) is index 5, but G simple so not possible. So imφ ⊆ ker(sgn) = Anp
, so

we’re done by Lagrange. For the final statement we show all non-abelian subgroups of A2, A3, A4

are not simple which finishes the statement which is just grunt work, and I pinky promise it’s
true, so we’re done.

Let’s see a sample application. Let have G has size 11×12. If G is simple then there are exactly 12
Sylow 11-subgroups. Consider the number n11. We know from the Sylow theorems that n11 ≡ 1
mod 11 and n11 | 12. So n11 = 12 since G is simple. Similarly n3 ≡ 1 mod 3 and n3 | 44. So
either n3 = 4 or 22. The corollary says that G divides n3!

2 , so n3 can’t be 4, so n3 = 22. But this
is a lot of elements. And 2 Sylow 11-subgroups interset only at the identity which leads to too
many elements, so none of this even works, which seems confusing, but actually just means that
G can’t exist, hence all groups of order 132 are non-simple.

Finally we now prove the Sylow theorems.

Proof. Let G be a group of order n = pam, with p ∤ m, p prime. Define the set Ω = {X ⊆ G :
|X| = pa. Let G act on Ω by multiplying all elements of Ω on the left by g ∈ G (we can see this
obeys the axioms of the group action after some quick inspection. We have |Ω| =

(
n
pa

)
≡ m ̸= 0

mod p. The proof of this can be seen by expanding out the binomial coeffient, but we’ll assume
it here. Suppose we have some U ∈ Ω, then let H ≤ G stabilise U . Then |H| | |U |. We can
prove this by seeing that hU = U for all h ∈ H. In other words for each u ∈ U the coset Hu is
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contained in U . Every u ∈ U lies in some coset of H, so the cosets partition U , so |H| | |U |. We
know that |Ω| ̸= 0 mod p. Since orbits partition, we know that

|Ω| = |O1|+ |O2|+ · · ·+ |Or|, Oi are the orbits

So there exists an orbit Θ whose size is prime to p. Let T ∈ Θ. By orbit-stabiliser, |G| =
|Θ|| stab(T )|. So pam = |Θ|| stab(T )|. By our previous lemma, | stabT | | pa, so we’re done
because there are no factors of p in Θ, so we’ve prove the first part of the theorem.

Now for the second part, we actually show something stronger, that is, if Q ≤ G is a subgroup
of size pb, where 0 ≤ b ≤ a, then there exists g ∈ G and P ∈ Sylp(G), such that gQg−1 ≤ P .
To prove this, let Q act on G/P by left coset multiplication. Note that the size of G/P does not
divide by p. Orbits have size dividing pb, so each orbit has size 1 or a power of p. But p ∤ |G/P |,
so there exists a size 1 orbit. In other words, there exists some coset gP such that ∀q ∈ Q,
qgP = gP , so rearranging gives that gQQ−1 ≤ P . So our second statement follows taking b = a.

For the final theorem, we need to show that np | |G|, and np ≡ 1 mod p. For the first statement,
consider G acting on Sylp(G) by conjugation. By the second theorem, we know that there is one
orbit of size np, so the statement follows instantly from orbit-stabiliser. For the second statement,
let P ∈ Sylp(G). Consider P acting on Sylp(G) by conjugation. By orbit-stabiliser, all the orbits
have size 1 or p. Since {P} is a size 1 orbit, to prove the statement is suffices to show that {P}
is the only size 1 orbit. Say {Q} is another size 1 orbit. So ∀h ∈ P , we have hQh−1 = Q. This
means that NG(Q) contains P . Now observe if pa is the largest power of p dividing |G|, we know
that it’s the largest power of p dividing |NG(Q)|. But Q is normal in NG(Q) by definition, and
Q,P ∈ Sylp(NG(Q)) =⇒ P = Q, since normality ⇐⇒ uniqueness for Sylow subgroups. So
we’ve prove all the Sylow theorems and we’re done.
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2 Rings

2.1 Definitions and examples

Definition. (Rings) A ring is a quintuple (R,+, ◦, 0R, 1R), where R is a set with 0R, 1R ∈
R, and + : R×R→ R, and ◦ : R×R→ R, called addition and multiplication are functions
satisfying the following:
(i) (R,+, 0R) is an abelian group.
(ii) ◦ is associative, so a ◦ (b ◦ c) = (a ◦ b) ◦ c.
(iii) 1R ◦ a = a ◦ 1R = a.
(iv) We have distributivity, so r1 ◦ (r2 + r3) = (r1 ◦ r2) + (r1 ◦ r3) and (r1 + r2) ◦ r3 =

(r1 ◦ r3) + (r2 ◦ r3).

Usually we just say ”Let R by a ring...” with everything implicit. The symbol (−r) denotes the
additive inverse of r.

In IB Groups, Rings and Modules, rings will always be commutative, so r1 ◦ r2 = r2 ◦ r1 for all
r1, r2 ∈ R.

Definition. (Subring) A subring of a ring R, is a subset S ⊆ R, such that 0R, 1R ∈ S,
S is closed under both multiplication and addition of the ring, and (S,+, ◦, 0R, 1R) is a
ring.

We notate this as S ≤ R.

For examples we have Z ≤ Q ≤ R ≤ C which are all rings under usual multipliction and addi-
tion. Along a similar line, we also have the Gaussian integers, Z[i] = {a + ib : a, b ∈ Z} with
multiplication and addition induced by C.

Another example is Z/nZ which forms a ring under addition and multiplication modulo n.
In Z/6 we have 2, 3 ∈ Z/6 such that 2 ◦ 3 = 0 mod 6 which is perfectly allowed.

Definition. (Units) An element u ∈ R, is called a unit if there exists some v ∈ R, such
that uv = 1R ∈ R.

This notion does not interact well with subrings, as we can take a unit in a subring without
taking it’s inverse, making it no longer a unit. For example 2 is a unit Q, but not in Z.

Discussion. Does 0R behave like it should? We would like 0 ◦R = 0R for all r ∈ R. In R we have
that 0R + 0R = 0R, now multiplying by r ∈ R, so r ◦ 0R + r ◦ 0R = r ◦ 0R, hence cancelling a
r ◦ 0R on both sides gives that r ◦ 0R = 0R.

In particular this implies that if 1R = 0R then for any r ∈ R, r = r ◦ 1R = r ◦ 0R = 0R so for all
r ∈ R, r = 0R, so R must be the zero ring, {0R}.

Definition. (Polynomial) Let R be a ring. Then a polynomial in x with coefficents in R
in an expression:

f(x) = a0 + a1x+ · · ·+ anx
n
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and xi are formal symbols. We will identify f(x) with f(x) + 0 ◦ xn+1 as the same. The
largest i such that ai ̸= 0 is called the degree of the polynomial. A polynomial f(x) is
monic of degree n if an = 1 and it is of degree n.

Definition. (Polynomial ring) The polynomial ring R[X] is given by:

R[X] = {f(X) : f is a polynomial in X with coefficents in R}

+, ◦ are the usual operations, 0R[X] = 0R and 1R[X] = 1R.

Definition. (Ring of formal power series) The ring of formal power series is a ring in X
with coefficents in R is:

R[[X]] =

{ ∞∑
n=0

riX
i : ai ∈ R, ∀i ≥ 0, i ∈ Z

}

with the standard +, ◦ of R.

For an example consider (1 − x) ∈ R[X]. Is it a unit? No! If g(x)(1 − x) = 1, then if g(x) =
a0 + a1x + · · · anxn, an ̸= 0, then (1 − x)g(x) = a0 + (a1 − a0)x + · · · (an − an−1x

n − anx
n+1

which cannot be 1 since the highest power term has a non-zero coefficent.

However (1− x) is a unit in R[[X]]! (1− x)(1 + x+ x2 + · · · ) = 1 ∈ R[[X]].

Definition. (Laurent polynomials) If R is a ring then a Laurent polynomial with coeffi-
ents in R is:

R[X,X−1] =

{∑
i∈Z

aiX
i : ai ∈ R, ∀i ∈ Z

}
Where ai is non-zero for at most finitely many i and with standard multiplication and
addition.

If R is a ring, and X is a set the set of R-valued functions, namely, {f : X → R} is a ring with
”pointwise” addition and multiplication as given by the ring R. (So (f + g)(x) = f(x) + g(x))

2.2 Homomorphisms, ideals, and quotients

Definition. (Ring homomorphism) Let R and S be rings. A function f : R→ S is a ring
homomorphism if for all r1, r2 ∈ R:
(i) f(r1 + r2) = f(r1) + f(f2)
(ii) f(0R) = 0S
(iii) f(r1r2) = f(r1)f(r2)
(iv) f(1R) = 1S .

These first two conditions are the conditions for f to be a group homomorphism with the addition
operation. Note that the second condition is not required and it follows from the first condition.
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But non-symmetrically the fourth condition is not implied by the third condition.

Definition. (Isomorphism) An isomorphism f : R → S is a bijective ring homomorph-
ism. The inverse function is also a ring homomorphism.

Definition. (Kernal) The kernal of a ring homomorphism f : R → S is the set ker f =
{r ∈ R : f(r) = 0S}.

Definition. (Image) The image of a ring homomorphism f : R → S is im f = {s ∈ S :
s = f(r) for some r ∈ R}.

Lemma. A homomorphism f : R→ S is injective if and only if ker f = {0}.

Proof. Follows from the corresponding fact about groups.

Definition. (Ideal) A subset I ⊆ R is an ideal, written as I ◁ R, if I is a subgroup and
if a ∈ I and b ∈ R, then ab ∈ I.

Keep in mind that an ideal is usually not a subring, since if 1R ∈ I then I = R.

Lemma. If f : R→ S is a ring homomorphism then ker f ◁ R.

Proof. Since f is also a group homomorphism, then ker f is a subgroup. If a ∈ ker f and b ∈ R
then f(ab) = f(a)(b) = 0f(b) = 0, so ab ∈ ker f .

Now we’ll look at some examples.

If Z is the ring of integers then nZ are ideals for all n ∈ N ∪ {0}. In fact, every ideal of Z has
this form. To see this I ̸= {0} is an ideal. Let n ∈ Z be the smallest postive element of I. We
claim that I = nZ. Let m ∈ I. We claim that it’s divisible by n. Apply the Euclidean algorithm
so m = qn + r where 0 ≤ r < n. But qn ∈ I by the absorbing property so r ∈ I since I is a
subgroup which contradicts minimality unless r = 0.

Definition. Let A ⊆ R. The ideal generated by A is

(A) =

{∑
a∈A

raa, ra ∈ R, all but finitely many ra are 0

}

Definition. (Principle) An ideal I ◁R is principle if there exists r ∈ R such that (r) = I.

For another example let R[X] be the polynomial ring in one variable over R. The subset {f ∈
R[X] : constant term is 0}, is an ideal. It is actually principle, generated by (X).
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Definition. (Quotient) Let I ◁ R be an ideal. Then the quotient ring R/I is the set of
cosets r+ I with 0R/I = 0R + I and 1R/I = 1R + I, and operations (r1 + I) + (r2 + I) =
(r1 + r2) + I and (r1 + I)(r2 + I) = r1r2 + I.

Proposition. The quotient ring is a ring. The function f : R→ R/I sending r to r + I
is a ring homomorphism.

Proof. Obviously an abelian group. Multiplication is well-defined. To see this suppose r1 + I =
r′1+I and r2+I = r′2+I. Then r1−r′1 = a1 ∈ I, and r2−r′2 = a2 ∈ I, so r′1r

′
2 = (r1+a1)(r2+a2) =

r1r2 + r1a2 + r2a1 + a1a2. By the absorbing property the last three terms are contained in I, so
r1r2 + I = r′1r

′
2 + I. The rest is straightforward.

For another example, we have nZ ◁Z. The quotient Z/nZ is the usual ring of integers modulo n.

Take (X) ◁ C[X]. The elements of C[X]/(X) are represeneted by:

a0 + a1X + · · · anXn + (X), but

n∑
i=1

aiX
i ∈ (X)

so each coset is represented equivalently by a0 + (X), so we have that C[X]/(X) ∼= C.

Similarly (X2)◁C[X], the ring C[X]/(X2) consists of elements represented by linear polynomials
a0+a1X+(X) with the following multiplication given by (a0+a1X)(b0+ b1X) = a0b0+(a1b0+
a0b1)X.

This ring is quite weird. For example if we take X ∈ C[X]/(X2). Then 0 ̸= X but X2 = 0. We
say that X is nilpotent.

Proposition. (Euclidean algorithm for polynomials in X) Let K be a field and f, g ∈
K[X]. Then there exists polynomials r, q ∈ K[X] such that f = gq + r with deg(r) <
deg(g).

Proof. Let n be the degree of f . So f =
∑n

i=0 aiX
i with ai ∈ K, an ̸= 0. Similarly g =

∑m
i=0 biX

i

with bi ∈ K and bm ̸= 0.

If n < m set q = 0 and r = f so we’re finished.

If instead n ≥ m, proceed by induction on the degree. Let f1 = f − anb
−1
m Xn−mg. Observe that

deg(f1) < n. If n = m then deg(f1) < n = m. So write f = (ab−1
m
Xn−m)g + f1, so we’re done.

Otherwise if n > m, then because deg(f1) < n, by induction we cab wrute write f1 = gq1 + r1
where deg(r1) < deg(g) = m. Then f = (anb

−1
m )Xn−mg+q1g+r1 = (anb

−1
m Xn−m+q1)g+r1

Corollary. If K is a field then K[X] every ideal is principle.

Proof. Identical to the case of Z using the proposition.

This proof fails for Z[X] (since Z is not a field) and for K[X,Y ].

18



Theorem. (First isomorphism theorem) Let φ : R→ S be a ring homomorphism. Then
the function f : R/ kerφ → imφ ≤ S sending r + kerφ → φ(r) is well-defined and an
isomorphism of rings.

Proof. Well-definedness, bijective, additive homomorphism property all follow from the group
statement. We check multiplicativity. f((f + kerφ)(t + kerφ)) = f(rt + kerφ) = φ(rt) =
φ(r)φ(t) = f(r + kerφ)(f + t+ kerφ) since φ is a ring homomorphism.

For an example consider the homomorphism φ : R[X] → C. sending f(X) to f(i). Clearly this
is a surjective ring homomorphism since a + bX → a + bi under φ. The kernal is exactly real
polynomials f(X) such that f(i) = 0 i.e i is a root. But since f has real coefficents that means
that (X + i)(X − i) | f(X) i.e. (X2 + 1) | f(X). So in fact kerφ = (X2 + 1), the ideal generated

by X2 + 1. Now applying the first isomorphism theorem R[X]
(X2+1)

∼= C.

Theorem. (Second isomorphism theorem) Let R ≤ S and J ◁ S. Then J ∩ R ◁ R and
R+J
J = {r + J : r ∈ R} ≤ S

J . Furthermore,

R

R ∩ J
∼=

R+ J

J
.

Proof. Define a function φ : R → S/J by r → r + J . The kernal is {r : r + J = 0} = {r ∈ J} =
R ∩ J . The image imφ = {r + J : r ∈ R} = R+J

J , so apply the first isomorphism theorem to
conclude.

Again similar to groups we have a correspondence result.

Theorem. (Correspondence theorem) If I ◁ R is an ideal there is a bijection between
subrings of R/I and subrings of R which contain I. This is given by sending L ≤ R/I →
{r ∈ R : r + I ∈ L} and conversely I ◁ S ≤ R→ S/I ≤ R/I

Proof. Same as from groups.

Similar for ideals there is a bijection betwen ideals in R/I and ideals in R that contain I.

Theorem. (Third isomorphism theorem) Let I ◁ R and J ◁ R with I ⊆ J . Then J
I ◁ R

I
and we have that,

R/I

J/I
∼= R/J.

Proof. Define a function φ : R/I → R/J sending r+I to r+J . Well-definedness follows from the
same argument as from groups. Easy verification to see it is a ring homomorphism. The kernal
is kerφ = {r + I : r + J = J}, i.e. that kerφ = J/I. So apply the first isomorphism theorem to
get the result.

Claim. Let R be any ring. There is a unique ring homomorphism

i : Z→ R
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The kernal of i, ker i is an ideal nZ ◁ Z. The number |n| is called the characteristic of R. The
rings Z,R,C,C[X] all have characteristic 0. Z/kZ has characteristic k.

2.3 Integral domains

In the ring Z/6 we have that 2 · 3 = 0. In an integral domain this will not happen.

Definition. (Integral domain) A nonzero ring R is an integral domain if ∀a, b ∈ R, if
ab = 0 then a = 0 or b = 0.

An element that violates this is called a zero divisor, i.e. a zero divisor is a non-zero element
a ∈ R such that ∃b ∈ R, b ̸= 0 where ab = 0.

All fields are integral domains, since if ab = 0, b ̸= 0 then a(bb−1) = 0b−1 = 0 so a = 0.

Any subring of an integral domain is an integral domain. To list a set of examples we have
Z,Z[i],Q,C,R[X],Z[X], etc. For a set of non-examples we have Z/6,Z/pq,C[X]/(X2) etc.

Lemma. Let R be a finite integral domain. Then R is a field.

Proof. Let a ∈ R be non-zero. Consider the function µa : R → R sending r → ar. It’s easy to
verify that µa is an (additive) group homomorphism for all a non-zero. Since R is an integral
domain, kerµa is trivial so the map is injective. So since R is finite, µa is also surjective. In
particular 1 = ab for some b ∈ R hence this is an inverse of a, so R is a field.

Definition. Let R be an integral domain. A text of fractions for R is a field F such that:
(i) R ≤ F is a subring,
(ii) every x ∈ F can be written as ab−1, where a, b ∈ R, where b−1 is the multiplictive

inverse to b in F .

Q is a field of fractions for Z.

Theorem. Every integral domain has a field of fractions.

Proof. Define a set S = {(a, b) ∈ R × R : b ̸= 0}. Place an equivalence relation ∼, defined
as (a, b) ∼ (c, d) ⇐⇒ ad = bc on S. We can check this is an equivalence relation, the only
non-trivial axiom to check is transitivity. Suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f). So we
have that ad = bc and cf = de. We wish to deduce that af = be. Multiple the first equality by f
and the second by b. So we get that adf = bcf and bcf = bed. Rearranging we get d(af − be) = 0
since d is non-zero and R is an integral domain we know that af = be. So ∼ is an equivalence
relation. Now define F = S

∼ with notation a
b = [(a, b)]∼. Now we turn F into a ring. Take the

operations to be a
b + c

d = ad+bc
bd and a

b
c
d = ac

bd . Some elementary operations show that these
operations are well-defined and makes F into a ring. To see that F is a field, if a

b ̸= 0F i.e.
a
b ̸=

0
1 =⇒ a · 1 ̸= b · 0 = 0, so a ̸= 0. now b

a ∈ F and b
a
a
b = 1F , so F is a field.

We now construct an injective homomorphism R→ F by r → r
1 . Straightforward to check that

this is a ring homomorphism. The kernal is {r ∈ R : r
1 = 0 in F} = (0). By the first isomorphism

theorem R is isomorphic to the image of R → F , in other words R ≤ F . Finally since a
b ∈ F is

a
b = a

1 ·
1
b =⇒ a

1 (
b
1 )

−1
= ab−1
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Sometimes we write FF(R) for a field of fractions of R.

Proposition. Let R be a ring. Then R is a field if and only if the only ideals in R are
(0) and R.

Proof. If R is a field and I ◁ R is non-zero then I contains a unit u. Since 1 = uv we have that
1 ∈ I. But for any r ∈ R, we have 1 · r = r ∈ I, so I = R.

Conversely suppose that (0) and R are the only ideals of R. Take r ∈ R non-zero. We know that
(r) = R since r is non-zero. Since 1 ∈ (r) we know that r · b = 1 for some b ∈ R so r is a unit
hence R is a field.

Definition. (Maximal ideal) An ideal I ◁ R is called maximal if it is not R itself and if
for any J ◁ R with I ⊆ J ⊆ R, either J = I or J = R.

Proposition. An ideal I ◁ R is maximal if and only if R/I is a field.

Proof. R/I is a field if and only if the ideals are R/I and (0). Now apply the ideal correspondence
theorem.

Definition. (Prime ideal) An ideal I ◁ R is prime if whenever ab ∈ I either a or b lies in
I.

An ideal nZ ◁ Z is a prime ideal if and only if n is a prime number (or zero). We can see this
since if n = p is prime, and ab ∈ pZ then ab is a multiple of p so either a or b must be a multiple
of p hence in pZ. Conversely if n is not prime and wlog positive (zero case is trivial) we know
that n = m1m2, 1 < m1,m2 < n. Then m1,m2 /∈ nZ but m1m2 ∈ nZ so the ideal is not a prime
ideal.

Interestingly pZ ◁ Z for p non-zero prime, then Z/pZ is a field so pZ is maximal.

Proposition. An ideal I ◁ R is prime if and only if R/I is an integral domain.

Proof. If I◁R is prime, then let (a+I) and (b+I) ∈ R/I. Suppose (a+I)·(b+I) = (ab+I) = 0+I
(recall 0 + I is the zero element in R/I). This means that ab ∈ I but I is prime so a or b ∈ I, so
a+ I or b+ I is 0.

Conversely if R/I is an integral domain, consider ab ∈ I. Then ab + I = 0. So either a + I or
b+ I is zero so a or b lies in I. So I is a prime ideal.

Corollary. If R is a prime and I ◁ R is maximal, then I is prime.

Proof. Since I ◁ R is maximal then R/I is a field. Hence R/I is an integral domain so I is prime
by the proposition.

Every nonzero ring R has a maximal ideal and therefore a prime ideal (proof is very set theoretic,
equivalent to the axiom of choice through Zorn’s lemma)
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2.4 Factorisation in integral domains

From now on we let R be a general integral domain

Definition. (Division) Let a, b ∈ R we say that a divides b, written as a | b if there exists
some c ∈ R such that b = ac. Equivalently we have that (b) ⊆ (a).

Definition. (Associates) We say that a and b in R are associates if a = bc for c ∈ R a
unit. Equivalent to (a) = (b) and also equivalent to that a | b and b | a.

In Z for example, we want to factorise up to units, i.e 6 = 2× 3 = (−2)× (−3). But as 2 and −2
are associates we declare some amount of uniqueness.

Definition. (Irreducible) An element a ∈ R is called irreducible if a ̸= 0, a is not a unit,
and if a = xy then either x or y is a unit.

In the special case of Z irreducible and prime are the same thing. But this is NOT always the
case.

Definition. (Prime element) We say that an element p ∈ R is prime if p ̸= 0, not a unit
and if p | xy, then either p | x or p | y.

Proposition. Let r ∈ R. Then r ̸= 0 is prime if and only if (r) is a prime ideal.

Proof. Suppose that (r) is a prime ideal. Then it is proper by definition, so r is not a unit. Suppose
that r | xy, so xy ∈ (r) so by primality either x or y lies in (r) so r | x or r | y. Conversely let
r ∈ R be a prime. Suppose xy ∈ (r) then r | xy so r|x or r|y so x ∈ (r) or y ∈ (r)

Again irreducible and prime are not the same thing. However...

Proposition. Let r ∈ R be prime. Then r is irreducible.

Proof. Let r ∈ R be a prime and suppose can write r as r = xy. Since r = 1Rr we have that
r | xy so either r | x or r | y. Assume by symmetry that r | x. This means that x = rz for ∈ R.
So r = xy = rzy. So since we’re in an integral domain and r ̸= 0 we have that zy = 1 hence y is
a unit

Now let’s look at an example.

Let R = Z[
√
−5] ≤ C, i.e. elements of the form a+b

√
−5 for a, b ∈ Z. Observe that R is an integral

domain since it is a subring of a field. Let’s discuss the units. We define a ”norm”, N : R→ Z≥0

sending a+ b
√
−5→ a2+5b2. This is a function and importantly it is multiplicative, so N(ab) =

N(a)N(b). Notice that all units have norm 1, since if 1 = uv, then N(1) = N(u)N(v) = 1, so we
must have that N(u) = N(v) = 1. This implies the units are ±1.

Claim. 2 ∈ R is an irreducible element
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Proof. If 2 = ab then N(2) = 4 = N(a)N(b). But no element in R has norm of 2. Therefore
either either a or b has norm 1, which means either a or b is a unit.

A similar calculation shows that 3, 1±
√
−5 are all also irreducible. But are they prime?

Observe that 6 = (1 +
√
−5)(1−

√
−5) = 2× 3

Claim. 2 does not divide 1±
√
−5

Proof. If it did then N(2) | N(1±
√
−5) but N(2) = 4 and N(1±

√
−5) = 6 but 4 ∤ 6 so 2 is no

longer a prime in Z[
√
−5].

In this same example, we see unique factorisation of 6 no longer holds.

Definition. An integral domain R is called a Euclidean domain if there exists a Euclidean
function φ : R \ {0} → Z≥0 such that:
(i) φ(ab) ≥ φ(b) for all a, b ̸= 0.
(ii) If a, b ∈ R with b ̸= 0, then there exists q, r ∈ R such that a = bq + r and either

r = 0 or φ(r) < φ(b).

This definition is just saying we can run the Euclidean algorithm (or some equivalent form of it)
on the ring.

We’ve already seen Z is an integral domain where φ(x) = |x|. Also seen, that if we take K a
field, then K[X] is a Euclidean domain with a Euclidean function given by the degree of the
polynomial.

Now take R = Z[i] ≤ C (Gaussian integers). This is a Euclidean domain with Euclidean function
φ(z) = |z|2

Claim. φ is a Euclidean function of R

Proof. The first requirement is obvious. For the second requirement, consider a, b ∈ Z[i], with
b ̸= 0. Consider the ratio a

b ∈ C. There is a point q ∈ Z[i] that has distance at most 1 from a
b . So

we have that
∣∣a
b − q

∣∣ < 1. Then write a
b = q + c where |c| < 1. Then we have that a = bq + bc,

now set r = bc. We know that r = a− bq ∈ R. And finally φ(r) = φ(b)φ(c) < φ(b)

Definition. (Principal ideal domain) A ring R is a principle ideal domain (PID) if it is
an integral domain, and every ideal is a principal ideal, i.e for all I ◁ R, there is some a
such that I = (a).

Proposition. Every Euclidean domain is a principal ideal domain.

Proof. Identical to the case of Z just with a general Euclidean function φ instead of |x|.

Z,R[X],C[X],Z[i] are all examples of PIDs.

For a non-example we have R = Z[X] and let I = (2, X). Suppose that I is principal, so I = (f),
hence 2 ∈ (f). So we have that 2 = fg for some g ∈ R. Hence we have that f is of degree zero,

23



so f ∈ {±1,±2}. But we can’t have f = ±1 since ±1 are units in Z[X] (since (2, X) ̸= R). But
now since X ∈ (f) we must have that ±2 | X which is false, hence (2, X) is not a principal ideal.

Simiarly C[X,Y ], K[X1, · · · , Xn, n ≥ 2 are not PIDs

Definition. (Unique factorisation domain) An integral domain R is a unique factorisation
domain (UFD) if:
(i) Every non-unit in R can be written as a product of irreducibles.
(ii) If p1 . . . pn = q1 · · · qm, where pi, qi are irreducible, then n = m and up to reordering

pi are qi are associates.

Now we aim to show that PID =⇒ UFD.

Lemma. In a PID, any irreducible element is also prime.

Proof. Let R be a PID and p ∈ R irreducible. Suppose p | ab and p ∤ a then we need to show that
p | b. Let’s consider the ideal (p, a). This is principal so (p, a) = (d) for some d ∈ R. So we must
have that d | p and d | a. So we have that p = q1d so since p is irreducible we know that either
d or q1 is a unit. If q1 is a unit, then d = q−1

1 p and this divides a so we have that a = q−1
1 px

which is a contradiction since p ∤ a. So we have that d is a unit, so 1R ∈ (p, a) so we can write
1R = rp+ sa for some r, s ∈ R, so b = rpb+ sab. But now we can see that ab is divisible by p so
b is divisible by p.

Lemma. (PIDs are Noetherian) Let R be a PID. If I1 ⊆ I2 ⊆ · · · ideals in R then for
some N ∈ Z>0, we have for all n ≥ N , In = In+1.

Proof. Consider I =
⋃

i Ii. This is an ideal and I ◁ R so I = (a) for some a ∈ R. But a ∈ IN for
some N , so the result follows.

Theorem. Let R be a principal ideal domain. Then R is a unique factorisation domain.

Proof. First we show that any r ∈ R is a product of irreducibles. If r is irreducible, we’re done.
If not, we can write r = r1s1 where either r1 or s1 are units. If both are products of irreducibles,
then we’re done. We can therefore assume by relabeling that r1 is not a product of irreducibles.
So we can write r1 = r2s2 with r2, s2 not units. Again without loss of generality we suppose
that r2 cannot be factored as a product of irreducibles. We continue in this way. So we can write
that (r) ⊆ (r1) ⊆ (r2) ⊆ · · · . But by our lemma this chain stabilises so there is some n such
that (rn) = (rn+1) = · · · , so we have that sn+1 is a unit which is a contradiction so r must be a
product of irreducibles.

For uniqueness let p1p2 . . . pn = q1q2 . . . qm with pi, qi irreducibles. So in particular we have that
p1 | q1 . . . qm. Since p1 is irreducible it is prime by our lemma so p1 divides some qi. We reorder
and suppose that p1 | q1. So q1 = p1a for some a. But since q1 is irreducible, a must be a unit so
p1 and q1 are asssociates. Since R is a principal ideal domain, it is an integral domain so we can
cancel p1 to get that p2p3 . . . pn = (aq2)q3 . . . qm. Now we can rename aq2 as q2 and continue as
above show that pi, qi are associates for all i. This also shows that n = m as if we had a leftover
product, suppose pk1 . . . pn = 1 which is a contradiction since they are irreducible so a product
of them cannot be a unit as that would imply that each pi was a unit for k + 1 ≤ i ≤ n.
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Claim. Let R be a unique factorisation domain. Then every irreducible in R is prime.

If p ∈ R is irreducible and ab ∈ (p). Write ab = pc. Now compare unique factorisation so
(q1 . . . qr)(s1 . . . sk) = p(t1 . . . tℓ) So p is an associate of soem qi or sj . So done because either a
or b is p times some element so lies in (p).

Definition. (Greatest common divisor) Let R be an integral domain and a1, . . . , an ∈ R.
We say that d ∈ R is a greatest common divisor (GCD) of a1, . . . , an if:
(i) d | ai for all i.
(ii) If d′ | ai for all i then d′ | d.

Definition. (Least common multiple) Let R be an integral domain and a1, . . . , an ∈ R.
We say that m ∈ R is a least common multiple (LCM) of a1, . . . , an if:
(i) ai | m for all i.
(ii) If ai | m′ for all i then m | m′.

Theorem. Let R be a unique factorisation domain. Then gcd’s and lcm’s exist and are
unique up to associates.

Proof. Let a1, . . . , an ∈ R. Let p1, . . . , pnn be list of all irreducible factors of the ai and no two
are associates of each other. So we can write

ai = ui

m∏
j=1

p
nij

j ,

where nij ∈ N and ui are units. Now we can let

mj = min
i
{nij},

and set

d =

m∏
i=1

pmj
u .

So clearly, for all i we have that d | ai. Suppose we have some d′|ai, ∀i, can set write d′ as

d′ = v

n∏
j=1

p
tj
j ,

for some unit v. So we must have that tj ≤ nij for all i, j. So we must have that tj ≤ mj for all
j. So d′ | d.

Now uniqueness up to associates follows from the fact that and two greatest common divisors
must divide each other by definition, hence they must be associates. The argument for least
common multiples is similar.

We’ve created a lot of ’special’ types of rings, so to make this section clearer use the following
class inclusion.
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rings ⊃ integral domains ⊃ unique factorisation domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃
fields

It should be very obvious why fields are Euclidean domains.

2.5 Factorisation in polynomial rings

Recall that, for F a field, F [X] is a Euclidean domain. Hence it is also a principal ideal domain
and therefore a unique factorisation domain. This gives a few consequences.

(i) If I ◁ F [X], then I = (f) for some f ∈ F [X].

(ii) If f ∈ F [X], then f is irreducible if and only if f is prime.

(iii) If f is irreducible suppose (f) ⊆ J ⊆ F [X]. Then J = (g) for some g ∈ F [X]. Since
(f) ⊆ (g) we must have that f = gh. But since f is irreducible, either g or h is a unit. If h
is a unit, then (f) = (g) and if g is a unit, then J = F [X] so (f) is a maximal ideal.

(iv) J ◁ F [X] is a non-zero prime ideal if and only if it is a maximal ideal. We’ve seen that
maximal ideals implies prime ideals, so conversely suppose (f) is a prime ideal, non-zero.
Hence f is prime and therefore irreducible so be the previous point (f) is maximal.

(v) Finally we have that f ∈ F [X] is irreducible if and only if F [X]/(f) is a field.

We have that X2 + 1 is irreducible in R[X]. Hence we have that R[X]
X2+1

∼= C.

Definition. (Content) Let R be a unique factorisation domain and let f = a0 + a1X +
· · ·+ anX

n ∈ R[X]. We define the content as

c(f) = gcd(a0, . . . , an) ∈ R.

Since the gcd is only defined up to a unit, so is the content.

Definition. (Primitive polynomials) A polynomial is called primitive if c(g) is a unit.

Now we want to introduce Gauss’ Lemma which provides an equivalency for reducibility using the
field of fractions of a unique factorisation domain. But before that we require some preparation.

Lemma. Let R be a unique factorisation domain. If f, g ∈ R[X] are primitive, then so
is fg.

Proof. Let

f = a0 + a1X + · · · anXn

g = b0 + b1X + · · · bmXm

be primitive, with an, bm ̸= 0. Suppose for contradiction, c(fg) is not a unit. Since R is a UFD,
we can find irreducible p ∈ R which divides c(fg). By assumption, c(g) and c(f) are units, so
p ∤ c(g), p ∤ c(f). Let k be minimal such that p ∤ ak and let ℓ be minimal such that p ∤ bℓ. Consider
the coefficient of Xk+ℓ in fg, given by ∑

i+j=k+ℓ

aibj .
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Since p | c(fg) we have that

p |
∑

i+j=k+ℓ

aibj .

However p|ak+ℓb0 + . . . ak+1bℓ−1 and p|ak−1bℓ+1 + . . . a0bℓ+k, therefore p | akbℓ so either p | ak
or p | bℓ which in either case is a contradiction, so c(fg) is a unit.

Corollary. Let R be a unique factorisation domain. Then for f, g ∈ R[X], c(fg) is an
associate of c(f)c(g).

Proof. Write f = c(f)f1 and g = c(g)g1 so we have that f1, g1 are primitive. Then

fg = c(f)c(g)f1g1

so therefore c(fg) = c(f)c(g)c(f1g1) and c(f1g2) is a unit so they are associates.

Finally we can now prove Gauss’ lemma.

Lemma. (Gauss’ lemma) Let R be a unique factorisation domain with F its field of
fractions. Let f ∈ R[X] be primitive. Then f is reducible in R[X] if and only if f is
reducible in F [X].

Proof. First for the forwards direction, let f = gh be a product in R[X] with g, h not units. Since
f is primitive so are g and h. So both have non-zero degree hence they are not units. So f is
reducible in F [X].

For the other direct let f = gh in F [X] with g and h not units. So we can clear denominators so
we pick a, b ∈ R such that ag, bh ∈ R[X]. then we have that abf = (ag)(bh).

Let

ag = c(ag)g1,

bh = c(bh)h1,

where g1 and h1 are primitive. So ab = uc(abf) = uc((ag)(bh)) = u′c(ag)c(bh). But abf =
c(ag)(bh)g1h1 = u−1abg1h1, since we’re in a integral domain we can cancel ab to get f =
u−1g1h1 ∈ R[X]. So f is reducible in R[X].

Now for an example. Consider f = X3+X+1 ∈ Z[X]. We can see that c(f) = 1 so f is primitive.
Suppose for contradiction that f is reducible in Q[X]. So by Gauss’ lemma, f is reducible in
Z[X], so X3 + X + 1 = gh where g, h ∈ Z[X] not units. Hence deg(g), deg(h) ≥ 1. Since
deg(f) = 3 = deg(g) + deg(h), suppose that deg(g) = 1 and deg(h) = 2. Hence let g = b0 + b1X
and let h = c0 + c1X + c2X

2. Multiplying out and equating coefficents we get that b0c0 = 1 and
c2b1 = 1. Hence b0, b1 must be ±1, so we must have that g is either 1±X or −1±X. Hence ±1
is a root of g which is a contradiction since f does not have a root of ±1. So f is not reducible
in Q[X], hence it has no root in Q and we have that Q[X]/(X3 +X + 1) is a field.

Proposition. Let R be a unique factorisation domain and F its field of fractions. Let
g ∈ R[X] be primitive. Then a polynomial f ∈ R[X] is divisble by g in R[X] if and only
if it is divisble by g in F [X]. Or in other words if J = (g) ◁R[X] and I = (g) ◁ F [X] then
J = I ∩R[X].
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Proof. We’ll prove the second formualation. Certainly we have that J ⊆ I ∩ R[X]. So let f ∈
I ∩R[X]. So we can write

f = gh with h ∈ F [X]

Now we clear denominators by choosing b ∈ R such that bh ∈ R[X]. We know by multiplying by b
so that bf = g(bh). We let (bh) = c(bh)h1 where h1 is primitive and h1 ∈ R[X]. So bf = c(bh)gh1,
but g and h1 are both primitive, so gh1 is also primitive. So c(bh) = c(bf)u where u is a unit.
Since bf is a product in R[X]

c(bf) = c(b)c(f) = b · c(f)
This gives that bf = ub · c(f)gh1 so cancelling b gives that f is divisble by g.

Theorem. If R is a unique factorisation domain, then R[X] is also a unique factorisation
domain.

Proof. First we prove that factorisations exist. Let f ∈ R[X]. We can write f = c(f)f1 where f1
is primitive. Since F is a UFD, factorise c(f) as p1 . . . pn for pi ∈ R irreducible. Now we deal with
f1. If f1 is not irreducible then write f1 = f2f3 where f2, f3 are not units. Since f1 is primitive
neither f2 nor f3 can be constant. So deg(f2), deg(f3) > 0 and also deg(f1) = deg(f2) + deg(f3)
using the fact that we’re working in an integral domain (think!). Induct on the degree, if f2 and
f3 are irreducible, we’re done otherwise repeat the same steps until the process terminates, which
will happen in finitely many steps since the degree is strictly decreasing. Putting this together
we can write f = p1 . . . pnq1 · · · qm all irreducibles.

Now for uniqueness. First we deal with the p’s. The content has a unique factorisation c(f) =
p1 . . . pn. So cancelling the content suffices to show uniqueness of factorisation for f1 = q1 . . . qm.
Suppose f1 = q1 . . . qm = r1 . . . rℓ are two factorisations in R[X]. Viewing this in F [X], where
F is the fraction field of R, since F [X] is a Euclidean domain, we know that ℓ = m and up to
reordering qi and ri are associates in F [X]. So qi | ri and ri | qi in F [X]. But from the previous
proposition we get the same statement in R[X]

This gives us that rings such as Z[X] and C[X,Y ] are not principal ideal domains, but they are
unique factorisation domains.

Theorem. (Eisenstein’s criterion) Let R be a unique factorisation domain and

f = a0 + a1X + a2X
2 + · · ·+ anX

n ∈ R[X]

is primitive, with an ̸= 0. Let p ∈ R be irreducible such that
(i) p ∤ an.
(ii) p | ai for 0 ≤ i ≤ n− 1.
(iii) p2 ∤ a0.
Then f is irreducible in R[X].

Proof. Suppose we have f = gh, with g = r0 + r1X + · · · rkXk and h = s0 + s1X + · · · sℓXℓ and
rk, sℓ ̸= 0. We know that and since p ∤ an it does not divide rk nor sℓ. Similarly r0s0 = a0 and
p2 ∤ a0 so p divides exactly one of r0 and s0. Let assume p | r0 so p ∤ s0. Let j be the index such
that

p | r0, p | r1, · · · , p | rj−1, p ∤ rj .
Consider aj . We know aj = r0sj+r1sj−1+· · ·+rj−1s1+rjs0. We know that p | r0sj+· · ·+rj−1s1,
also p ∤ rj and p ∤ s0, because p is prime, p ∤ aj . So we must have that j = n. We also have that
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j ≤ k ≤ n, so j = k = n. Hence deg g = n and deg h = 0. Since f is primitive we must have that
h is a unit, so this is not a proper factorisation. Hence f is irreducible in R[X].

For an example consider the polynomial Xn−p ∈ Z[X] with p prime. Apply Eisenstein’s criterion
with p ∈ Z and observe all the conditions hold. This is certainly primitive, since this is monic. So
Xn− p is irreducible in Z[X], hence it is also irreducible in the fraction field polynomial, namely
Q[X]. In particular Xn − p has no rational roots, so n

√
p is irrational.

Next, consider f = Xp−1 +Xp−2 + · · ·+X + 1 ∈ Z[X] for p prime. See that we can write f as

f =
Xp − 1

X − 1
.

So perchance we should write Y = X − 1. Then we get a new polynomial

f̂(Y ) =
(Y + 1)p − 1

Y
= Y p−1 +

(
p

1

)
Y p−2 + · · ·+

(
p

p− 1

)
.

So now we can apply Eisenstein’s criterion so f̂ . So f̂ is irreducible in Z[X]. If we had a fac-

torisation f(X) = g(X)h(X) =⇒ f̂(Y ) = g(Y + 1)h(Y + 1), but we know that f̂ cannot be
factorised, so f is irreducible.

2.6 Gaussian integers

This is the ring Z[i] = {a+ ib : a, b ∈ Z} ≤ C and we have the usual norm N(a+ ib) = a2 + b2

which helpfully is a Euclidean function. This implies that Z[i] is a Euclidean domain, hence it is
a principal ideal domain and therefore a unique factorisation domain. So irreducible and prime
are the same in the Gaussian integers. The units in Z[i] are ±1 and ±i which are exactly the
norm 1 elements.

We make the following observations.

(i) We have 2 = (1 + i)(1− i) so 2 is not a prime.

(ii) Similiarly 5 = (1 + 2i)(1− 2i) so also not a prime.

(iii) We claim that 3 is a prime in Z[i]. The norm of 3 is 9 so if 3 = uv then either N(u) or N(v)
is 1 (so one is a unit) or N(u) = N(v) = 3. But if u = a + bi then we’d need a2 + b2 = 3
which has no solutions for a, b ∈ Z. So one of u or v is a unit, hence 3 is prime.

So what are the primes in Z[i]?

Proposition. A prime number p ∈ Z remains prime when viewed in Z[i] if and only if
p ̸= a2 + b2 for a, b ∈ Z \ {0}.

Proof. If p = a2 + b2 then in Z[i] we can write p = (a + bi)(a − bi) so p is not irreducible and
hence not prime.

Conversely suppose p = uv is a product of non-units in Z[i] then p2 = N(u)N(v). Since u and v
are non-units then N(u) = N(v) = p. Write u = a+ bi. Then we have that a2 + b2 = p.

Now we want to classify all of the primes in Z[i]. But before that we need a lemma.

29



Lemma. Let p be a prime number. Then the group F×
p of non-zero elements mod p

under multiplication is a cyclic group. So F×
p
∼= Cp−1.

Proof. Certainly F×
p is finite abelian. By the classification of finite abelian groups, if F×

p is not
cyclic then it contains Cm × Cm as a subgroup for some m > 1. This means there are at least
m2 elements x ∈ F×

p satisfying xm − 1 = 0. But a polynomial with coefficients in Fp has number
of solutions bounded above by the degree, which is a contradiction.

Now let’s prove the theorem.

Theorem. (Classification of primes in Z[i]) The primes in Z[i] up to associates are exactly
(i) The primes p ∈ Z such that p ≡ 3 mod 4.
(ii) Gaussian integers z ∈ Z[i] with N(z) = p where p is a prime that is either 2 or 1

mod 4.

Proof. Firstly we prove the two types of Gaussian integers are prime. If p ∈ Z is 3 mod 4 then
p ̸= a2 + b2 for a, b ∈ Z \ {0} (by arithmetic) so by our proposition these are primes in Z[i]. Now
for z ∈ Z[i] if N(z) = p, with p prime congruent to 2 or 1 mod 4, we’ll show that z is irreducible.
Write z = uv in Z[i], then p = N(z) = N(u)N(v) in Z≥0. So either N(u) or N(v) is 1 so u or v
is a unit, so z is irreducible hence prime.

Now we show all primes in Z[i] are of this form. Let z ∈ Z[i] be prime. Observe that N(z) = zz is
a factorisation of N(z) viewed inside Z[i] into irreducibles. Let p be a prime number that divides
N(z) in Z≥0. Suppose p ≡ 3 mod 4 so p is prime in Z[i]. So p = zz hence p | z or p | z therefore
because z is conjugate to z so p | z and p | z. But then p = z up to associates. Now assume that
p ≡ 2 or 1 mod 4. The p ≡ 2 mod 4 case can be worked out by hand, so assume p = 4k+ 1 for
k ∈ Z. By the lemma we know that F×

p
∼= C4k. There is a unique order 2 element here (which

is −1). If a ∈ F×
p is order 4, then we have a2 ≡ −1 mod p. So p divides (a + i)(a − i) but not

a+ i or a− i individually. So p is not irreducible in Z[i]. So now we can write p = z1z2 non-units.
Taking the norm we get that N(p) = p2 = N(z1)N(z2). Because these are non-units, we must
have that N(z1) = N(z2) = p. So z1 = z2. Finally we have that p =, z1z1 | N(z) = zz all of z, zi
are irreducible so z, z1 or z, z1 are associates. Hence N(z) = p.

Corollary. An non-negative integer n can be written as a sum of two squares if and only
if when we write n as a product of distinct primes,

n = pn1
1 pn2

2 · · · p
nk

k

pi ≡ 3 mod 4 implies that ni is even.

Proof. If n = x2 + y2 we have that n = N(z) where z = x + iy ∈ Z[i]. Factorise z into primes,
z = α1 · · ·αq. Either αi is a prime number in Z that is 3 mod 4 or it has norm p where p is 2 or
1 mod 4. Taking norms we get that n = x2 + y2 = N(z) = N(

∏
αi) =

∏
i N(αi). Each factor

is this product is either p2 or p ≡ 3 mod 4 or p with p = 2 or p ≡ 1 mod 4. For the converse
let n = pn1

1 · · · p
nk

k satisfying hypothesis given. Now we know that pi = N(αi) if pi ≡ 3 mod 4,

pni
i = N(pi)

ni
2 otherwise pi = 2 or pi = 1 mod 4 so pi = N(αi) for some αi so pni

i = N(αni
i ) so

write n as N(z) in this way.
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2.7 Algebraic integers

Definition. (Algebraic integer) A complex number α ∈ C is an algebraic integer if it is
a root of a monic polynomial in Z[X].

For a piece of notation we write Z[α] ≤ C for an algebraic integer α, as the smallest subring
containing α so

Z[α] =
⋂
R≤C
α∈R

R.

Or equivalently Z[α] is the image of eα : Z[X]→ C given by g → g(α)

Proposition. Let α ∈ C be an algebraic integer. The ideal I = ker(eα)◁Z[X] is principal,
and I = (fα) with fα monic and irreducible.

Recall that Z[X] is not a principal ideal domain, so this proposition is not trival.

From our proposition we can use the following definition.

Definition. (Minimal polynomial) The minimal polynomial of an algebraic integer α is
the irreducible monic fα such that (fα) = ker(eα).

Now for the proof of the proposition

Proof. By definition I = ker eα is non-zero. Take fα ∈ I of minimal degree. We can assume fα
is primiative (since monic). Now we aim to show that I = (fα). Let h ∈ I. In Q[X] we have the
Euclidean algorithm so we can write h = fαq + r with r = 0 or deg r < deg fα. Now clearing
denominators so for some a ∈ Z we get that ah = fα(aq) + (ar). Now plugging in α we get that

ah(α) = fα(α)aq(α) + ar(α)

Since that fα, h ∈ I we get that fα(α) = h(α) = 0, so we have that ar(α) = 0. So (ar) ∈ I. But
since we have that fα ∈ I has minimal degree, and deg(r) = deg(ar) we must have that r = 0.
So we know that ah = fα · (aq). This almost what we want, we just need to factorise h instead
of ah. Taking the contents we know that c(fα) is a unit so c(ah) = c(aq), so a | c(aq). Therefore
aq = aq for q ∈ Z[X]. So this means that q = q ∈ Z[X]. So we know that h = fαq ∈ (fα). Hence
I = (fα).

Now we’re left to show that fα is irreducible. We know that

Z[X]

(fα)
∼= im(eα) ≤ C.

But since C is an integral domain all of its subrings are integral domains, so Z[X]/(fα) is an
integral domain, so (fα) is prime hence fα is prime, so it’s irreducible.

We have plenty of examples of algebraic integers.

(i) α = i is an algebraic integer with fα = X2 + 1.

(ii) α = 1
2 (1 +

√
−3) is an algebraic integer with fα = X2 −X − 1.
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(iii) The monic polynomial X5 − X + d with d ∈ Z≥1 has exactly one real root which is an
algebraic integer.

Theorem. The real root ofX5−X+d cannot be written using integers and the operations
×,+,−, n

√
,∇·.

Proof. II Galois Theory

Proposition. Let α ∈ Q be an algebraic integer. Then α ∈ Z.

Proof. Let fα be the minimal polynomial of α irreducible. So by Gauss’ lemma we have that the
polynomial is also irreducible in Q[X]. But (X − α) divides it in Q[X] so fα = (X − α) hence
α ∈ Z.

It should be noted that the set of algebraic integers form a ring, but this is not obvious and will
be proved later.

2.8 Hilbert’s basis theorem

Definition. (Noetherian ring). A ring is Noetherian if for any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

then there is some N such that IN = IN+1 = · · · . This is known as the ascending chain
condition (ACC).

Definition. (Finitely generated ideal) An ideal I ◁ R is finitely generated if it can be
written as I = (r1, . . . , rn) for some r1, . . . , rn ∈ R.

Proposition. A ring R is Noetherian if and only if every ideal is finitely generated.

Proof. Suppose all ideals are finitely generated. Given the chain I1 ⊆ I2 ⊆ · · · Consider

I =

∞⋂
j=1

Ij .

I is an ideal (Example Sheet 2) so we know that I is finitely generated, so I = (r1, . . . , rn) with
ri ∈ Iki

. So let
K = max

i=1,...n
{ki}.

Then we have that r1, . . . , rn ∈ IK , so IK = I = IK+1 = · · · so R is Noetherian.

For the converse if I is not finitely generated, pick r1 ∈ I such that I ̸= (r1). Pick r2 ∈ I \ (r1)
such that (r1, r2) ̸= I, and so on to get (r1) ⊆ (r1, r2) ⊆ · · · strictly increasing so R is not
Noetherian.
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Theorem. (Hilbert’s basis theorem) Let R be a Noetherian ring. Then R[X] is also
Noetherian.

Proof. Let J ◁R[X] be an ideal. Let f1 ∈ J have minimal degree. If J ̸= (f1) pick f2 ∈ J \ (f1) of
minimal degree, and so on. If J = (f1, . . . , fk) then we’re done so suppose for contradiction we
don’t get this. Let ai be the leading coefficient of fi. The chain (a1) ⊆ (a1, a2) ⊆ · · · stabilises
by ACC for R. So for some m we have that (a1, a2, . . . , am) = (a1, a2, . . . ). Now we let

am+1 =

m∑
i=1

aibi

and consider the polynomial

g =

m∑
i=1

bifiX
deg fm+1−deg fi .

This has the same degree and leading coefficient as fm+1. Then fm+!− g has smaller degree and
lies in J , but not in (f1, . . . fm). This contradicts minimality of deg fm+1. So the process must
terminate, hence R[X] is Noetherian.

We also have that R[[X]] is Noetherian

Corollary. Z[X1, X2, . . . , Xn] is Noetherian, and for F a field F [X1, X2, . . . , Xn] is No-
etherian.

Proof. Let J ◁ R
I and let J ′ ◁ R be the corresponding ideal in R. If J ′ is generated by r1, . . . , rm

then J is generated by (r1 + I), . . . , (rm + I).

In fact all finitely-generated rings is a quotient of some Z[X1, . . . , Xn] giving the final corollary
of this section.

Corollary. All finitely-generated rings are Noetherian.

Proof. Obvious

3 Modules

3.1 Definitions and examples

An example of a module is a vector space over a field K. (Recall a vector space is an abelian
group V with a ’scaling’, K × V → V .)

Another example is that if A is any abelian group, we can think of Z×A→ A sending (n, a)→
a+ a+ · · ·+ a︸ ︷︷ ︸

n times

Definition. (R-module) Let R be a communiative ring. Then a quadruple (M,+, 0M , ◦)
is an R-module if
(i) (M,+, 0M ) is an abelian group.
(ii) ◦ : R×M →M satisfies
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(a) (r1 + r2) ◦m = r1m+ r2m;
(b) r ◦ (m1 +m2) = (r ◦m1) + (r ◦m2);
(c) r1 ◦ (r2 ◦m) = (r1 ◦ r2) ◦m; and
(d) 1R ◦M = m.

for all m1,m2,m ∈M and r1, r2, r ∈ R.

If R = K is a field, then an R-module is a K-vector space. Any abelian group is naturally a
Z-module.

For any R the self product Rm = R× · · · ×R︸ ︷︷ ︸
m times

is an R-module via R × Rm → Rm given by

(r, r1, . . . , rm)→ (rr1, . . . , rrm).

If I ◁ R then I is an R-module via multiplication.

Similarly the group R/I is also an R-module via R×R/I → R/I given by (r, s+ I)→ (rs+ I).

Let V be a K-vector space and let α ∈ End(V) so α is a linear map. We can give V the structure
of a module over K[X] by

K[X]× V → V

(f, v)→ f(α)(v)

giving a K[X]-module.

Another important example. Let φ : R→ S be a ring homomorphism and let M be an S-module.
We can turn M into an R-module via:

R×M →M

(r,m)→ φ(r)m.

In particular this turns S into an R-module.

Definition. (Submodule) Let M be an R-module. A subgroup N ⊆M is an R-submodule
if for every n ∈ N and r ∈ R, we have rn ∈ N . We write N ≤M .

For a non-example Rn is an R-vector space hence it is an R-module. But Qn is not a R-submodule
because it’s not closed under the scaling operation.

If R = K then a K-submodule of V is just a K-vector subspace.

Definition. (Quotient module) Let N ≤M be an R-module. The quotient module is the
group M/N equipped with

R×M/N →M/N

(r,m+N)→ (rm+N).

It can be see that this is well defined and itself an R-module.
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Definition. Let M,N be. R-modules. An R-module homomorphism is group homo-
morphism φ : M → N such that φ(rm) = rφ(m) for all r ∈ R and m ∈M

Definition. (Isomorphism) An isomorphism of R-modules is a bijective homomorphism.
We say that the modules are isomorphic.

Again we have the isomorphism theorems and a correspondence theorem for modules.

Theorem. (First isomorphism theorem) Let φ : M → N be a homomorphism of R-
modules. Then

kerφ = {m ∈M : φ(m) = 0}

is a submodule of M . The image

imφ = {φ(m) : m ∈M}

is a submodule of N . Furthermore there is an isomorphism

M/ kerφ ∼= imφ

Proof. Immediate from the first isomorphism theorem of groups.

Theorem. (Second isomorphism theorem) Let L,K ≤M be R-submodules. Then

K + L = {k + ℓ : k ∈ K, ℓ ∈ L}

is an R-submodule of M . Moreover

K + L

K
∼=

L

L ∩K

is an isomorphism of R-modules.

Proof. Immediate from the second isomorphism theorem of groups.

Theorem. (Third isomorphism theorem) Let N ≤ L ≤M . Then

M/L ∼=
M/N

L/N

is an isomorphism of R-modules.

Proof. Immediate from the third isomorphism theorem of groups.

Theorem. (Correspondence theorem) We have the correspondence

{Submodules of M/N} ↔ {Submodules of M which contain N}.
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Proof. Same as the correspondence theorem for groups.

Definition. (Annihilator) Let M be an R-module. For m ∈M its annihilator is

Ann(m) = {r ∈ R : rm = 0}.

For any set S ⊆M we define

Ann(S) = {r ∈ R : rm = 0 for all m ∈ S} =
⋂
s∈S

Ann(s).

We observe that the annihilator of S ⊆M is an ideal in R.

Definition. (Submodule generated by an element) Let M be a R-module and m ∈ M .
The submodule generated by m is

Rm = {rm ∈M : r ∈ R}.

Proposition. For m ∈M there is an isomorphism R/Ann(m) ∼= Rm.

Proof. Consider the functionR→M sending r → rm. This is clearly aR-module homomorphism,
so the result follows from the first isomorphism theorem.

Definition. (Finite generation) An R-module M is finitely generated if there exists ele-
ments m1, . . . ,mk such that

M = Rm1 +Rm2 + · · ·Rmk = {r1m1 + · · · rkmk : ri ∈ R}.

Lemma. An R-moduleM is finitely generated if and only if there is a surjective R-module
homomorphism from Rk →M .

Proof. If M = Rm1 + · · ·+Rmk then consider

Rk →M

(r1, . . . , rk)→
∑

rimi,

clearly surjective homomorphism. Conversely if φ : RK →M is given, let ei = (0, . . . , 0, 1, 0, . . . , 0)
with a 1 in the ith position and mi = φ(ei) and now we can check that mi generates M by sur-
jectivity.

Corollary. If M is finitely generated R-module and N ≤M then M/N is finitely gener-
ated.

Proof. Using the previous lemma we can compose surjection Rk →M and surjection M →M/N
hence we have a surjection Rk →M/N .

36



However a submodule of a finitely-generated module need not be finitely-generated. For example
let R = C[X1, X2, . . . ]. And consider the module M = R so the submodule I generated by
(X1, X2, . . . ) is not finitely-generated but M is finitely-generated (by 1).

3.2 Direct sums and free modules

Now we’ll slug through some definitions.

Definition. (Direct sum) Let M1, . . . ,Mk be R-modules. The direct sum is the abelian
group M1 × · · · ×Mk with scaling

R×M1 × · · · ×Mk →M1 × · · · ×Mk

(r,m1, . . . ,mk)→ (rm1 . . . , rmk)

We notate this as M1 ⊕ · · · ⊕Mk.

Definition. (Linear independence) Let m1, . . . ,mk ∈ M . Then {m1, . . . ,mk} is R-
linearly independent if ∑

rimi = 0 =⇒ ri = 0 for all i

Definition. (Free generation) A subset S ⊆M freely generates M if
(i) S generates M
(ii) Any set function f : S → N with N an R-module extends to an R-module homo-

morphism φf : M → N with the condition φf (s) = f(s) ∀s ∈ S.

Definition. (Free module and basis) A module M is free if it is freely generated by some
subset S ⊆M , and S is called a basis.

Now let’s look at an example. Consider the Z-module Z/2. Suppose Z/2 was generated by some
S ⊆ Z/2. This can only happen with S = {1}. Then this implies that there is a homomorphism
φ : Z/2→ Z sending 1 to 1. But it it does not send 0 to 1+ 1 since φ(0) = 0. So Z/2 is not free.

Proposition. Let S = {m1, . . . ,mk} ⊆ M . Then the following three statement are
equivalent
(i) S generates M freely.
(ii) S generates M and S is linearly independent.
(iii) Every m ∈M is uniquely expressible as m = r1m1 + · · · rkmk.

Proof. The fact that (ii) ⇐⇒ (ii) follows from IB Linear Algebra.

For the first statement, suppose that S genreates M freely. If S is not linearly independent we
can write

0 = r1m1 + r2m2 + · · ·+ rkmk

and we can assume with reordering that r1 ̸= 0. Consider the set function f : S → R sending
m1 → 1 and mi → 0 for all i > 1. Now compute 0 = φ(0) = φ (

∑
rimi) = r1 which is
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contradiction. For the converse assume (iii). Since every m is uniquely m =
∑k

i=1 rimi. Given
any set function f : S → N we define φf : M → N by

φf (r1m1 + · · · rkmk) = r1φf (m1) + · · ·+ rkφf (mk).

We have well-definedness by uniqueness and is clearly an R-module homomorphism. So S gen-
erates M .

Now take {2, 3} ⊆ Z. This set generates Z by Bezout’s, but

0 = 3 · 2 + (−2) · 3

so the set does not generate Z freely. But what differs from linear algebra vector spaces, is that
neither 2 or 3 generate Z so no it’s not like a linearly independent list of elements in a vector
space where we can chuck elements out to get a basis.

Definition. (Relations) Let M be finitely-generated with generators given by θ : Rk →
M . Then ker θ is called the module of relations of M with respect to θ.

Definition. (Finitely presented module) We say that a module is finitely-presented if
ker θ is finitely generated.

And for someone completely different.

Proposition. (Invariance of dimension/rank) Let R be a non-zero ring. Then if Rn ∼= Rm

then n = m.

Proof. We will prove the statement by reducing to R to a field where we know the result follows.

If I ◁ R is an ideal and M is an R-module, consider IM = {r ·m : r ∈ I,m ∈ M} ≤ M . So we
can consider M/IM as an R-module. If r ∈ I then its action on M/IM is

r(m+ IM) = rm+ IM = 0 + IM = IM.

So we can make M/IM into an R/I-module by

(r + I) · (m+ IM) = r ·m+ IM.

Now let I ◁R be a maximal ideal So we have an isomorphism (R/I)n ∼= (R/I)m of R/I-modules.
Since R/I is a field we have n = m by the invariance of dimension for vector spaces.

3.3 Matrices over Euclidean domains

For the rest of the course we’ll fix a Euclidean domain R along with a Euclidean function
φ : R \ {0} → Z≥0. We know that for a, b ∈ R we can find x, y ∈ R such that ax+ by = gcd(a, b).

Definition. (Elementary row operations) Let A be an m × n matrix with entries in R.
The elementary row opertaions are the following

(ER1) Add c ∈ R times row i to row j
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(ER2) Swap row i and row j
(ER3) Multiply the ith row by a unit c ∈ R.
A similarly we can do column operations in the same way.

How ’nice’ can we make A?

Definition. (Equivalent matrices) Two matrices A,B over R are equivalent if A can be
obtained from B by a sequence of row and column operations. In particular

B = QAT−1

for Q,T invertible.

Notice that the matrix

(
2 0
0 0

)
over Z cannot be reduced any further.

Theorem. (Smith normal form) Any m × n matrix over R is equivalent to one of the
form 

d1
d2

. . .

. . .

0


with

d1 | d2 | · · · | dr
These di are the invariant factors of A

Proof. If A = 0 we’re done so assume that A ̸= 0. Let Aij be some non-zero entry. By row and
column operations we can move this to the (1, 1) position, so we can assume that A11 ̸= 0. Now
we have two basic moves.

(i) If A1j is not divisible by A11 so we can write A1j = A11q + r with φ(r) < φ(A11). By
column operations we can make the (i, j)-entry equal to r. Now swap the (1, j)-entry with
the (1, 1)-entry. The result of this is that φ of the (1, 1) entry has got smaller.

(ii) Similar move for Aj1. Using row operations instead of column operations.

The consequence of (i) and (ii) is that after finitely many operations the (1, 1) entry divides
everything in row 1 and column 1. By more operations we get the matrix of the form

d 0 · · · 0
0
... C
0


for a (m− 1)× (n− 1) matrix C. Replace A with this matrix. Now suppose that Aij in C is not
divisible by d. Then

Aij = dq + r, φ(r) < φ(d).
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Now we add column 1 to column j and subtract q times row 1 from row i. This gives r in the
new (i, j)-entry. Swap again to make r the (1, 1)-entry. Now we can repeat (i) and (ii) to get a
matrix of the form 

d′ 0 · · · 0
0
... C ′

0


Where d′ = r. By applying this finitely many times we get a matrix

d 0 · · · 0
0
... C ′

0


where d divides every entry in C.

Now recurse with C replacing A from the start of the proof. Then the output matrix is as
claimed.

Remark. However we haven’t shown the invariant factors are well-defined.

Recall for a matrix A a k × k minor is the determinant of a k × k submatrix.

Definition. (Fitting ideals) For A a matrix over R, the kth fitting ideal is the ideal

Fitk(A) ◁ R

generated by the k × k minors of A.

Proposition. If A and B are equivalent matrices then

Fitk(A) = Fitk(B), ∀k.

Proof. We’ll check that Fitk(A) is unchanged by row and column operations. Since Fitk(A) =
Fitk(A

T ) it suffices to check row operations. Consider C a k×k-submatrix of A. Consider adding
c times row i to row j.

(i) If both rows lie inside C then the minor is unchanged by properties of the determinant.

(ii) If the jth row is outside C then C is unchanged obviously.

(iii) Suppose the jth row in C and the ith row is not. If row i is [f1, . . . , fk] then the new row i
is [Cj1 + cf1, · · · , Cjk + cfk]. Now computing the determinant of this new submatrix along
this row. So

detC ′ = detC + c detD

where D is obtained from C by replacing row j with [f1, · · · , fk] But D is a k×k submatrix
of A so we’re done since ideals are closed under addition and multiplication.

The remaining operations are straightforward to check. We conclude that Fitk(A) ⊆ Fitk(B) and
since all row operations are invertible we have that Fitk(A) = Fitk(B)
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Corollary. If A has Smith normal form then

Fitk(A) = (d1d2 · · · dk)

Proof. Trivial

Proposition. Let R be a principal ideal domain. Any submodule of Rm can be generated
by m or fewer elements.

Proof. We will induct on m since the m = 1 case is the definition of a PID. Let N ≤ Rm. Consider
I = {r ∈ R : (r, r2, . . . , rm) ∈ N for some r2, . . . , rm ∈ R}. Certainly this is an ideal so I◁R. Since
R is a PID we have that I is generated by a single element (a). Choose n = (a, a2, . . . , am) ∈ N .
for (r1, . . . , rm) ∈ N we know that a | r1.So (r1, . . . , rm) − rn = (0, r2 − ra2, . . . , rm − ram). So
everything in N is a multiple of n plus something in N ∩ ({0}×Rm−1) ≤ Rm−1. Now induct.

Theorem. Let R be a Euclidean domain. N ≤ Rm. There exists a basis v1, . . . , vm for
Rm such that N is generated by d1v1, . . . , drvr for some 0 ≤ r ≤ m, di ∈ R such that
di | di+1.

Proof. By the previous proposition we have that N is generated by x1, . . . , xn with n ≤ m.
Viewing this as a matrix with xi as the ith column. Putting this into Smith normal form we note
that row operations change the basis for Rm and column operations for N . The matrix has the
form 

d1
d2

. . .

dr
0

. . .

0
0
...
0


So in this new basis N is generated by {divi}ri=1.

Theorem. If R is a Euclidean domain, then any submodule of Rm is free.

Proof. In the proof of the previous theorem we have a generating set d1v1, . . . , drvr. Any linear
dependence between {divi} gives a linear dependence between the vi’s themselves, but {vi} is a
basis so it’s linear indepedent.

Theorem. Let R be a Euclidean domain. Let M be a finitely generated R-module. Then

M ∼= R⊕ · · · ⊕R⊕ R

(d1)
⊕ · · · ⊕ R

(dr)
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where di ̸= 0 and di | di+1.

Remark. If R = Z and M is finite we recover the classification of finite abelian groups. We get
a generalisation of this statement to finitely generated abelian groups which may be possibly
infinite.

Proof. Write γ : Rm →M a generating surjection. We know ker γ ≤ Rm and

M ∼=
Rm

ker γ
.

Pick a basis v1, . . . , vm for Rm such that ker γ is generated by d1v1, . . . , drvr for 0 ≤ r ≤ m) with
di | di+1. This means that

M ∼=
Rm

⟨(d1, 0, . . . , 0), (0, d2, 0, . . . , 0), · · · , (0, . . . , dr, 0, . . . , 0)⟩
∼=

R

(d1)
⊕ · · · ⊕ R

(dr)
⊕R⊕ · · · ⊕R

hence we’re done.

Suppose that G is abelian generated by a, b, c ∈ G with the following relations

2a+ 3b+ c = 0

a+ 2b = 0

5a+ 6b+ 7c = 0

We have a surjection of abelian groups

Z3 → G

e1 → a

e2 → b

e3 → c.

The associated matrix is 2 1 5
3 2 6
1 0 7

 ,

and the homomorphism Z3 → Z3 has G ∼= Z3/ im(a). We need to find the ”di’s” from the
theorem. To do this calculate Fitk(A). This comes out to

Fit1(A) = Fit2(A) = (1), Fit3(A) = (3).

So G ∼= Z/3

Proposition. (Chinese remainder theorem) For R a Euclidean domain with a, b ∈ R
such that gcd(a, b) = 1. Then

R

(a)
⊕ R

(b)
∼=

R

(ab)
.

Proof. Consider φ : R/(a)⊕ R/(b)→ R/(ab), given by (r1 + (a), r2 + (b))→ (br1 + ar2 + (ab)).
To show well-definedness, say (r1 + (a), r2 + (b)) = (r′1 + (a), r′2 + (b)). So r1 = r′1 + za and
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r2 = r′2+wr2 = r′2+wb. So by computation we get that br1+ar2+(ab) = br′1+bza+ar′2+awb =
br′1 + ar′2 + (ab). Hence φ is well-defined.

By the Euclidean algorithm we can write 1 = ax+ by. Observe that

φ(y + (a), x+ (v)) = 1 + (ab)

and since R/(ab) is generated by 1R/(ab) and φ is an R-module homomorphism, the map is
surjective.

Finally for injectivity we calculate kerφ. If br1 + ar2 ∈ (ab) then write

br1 + ar2 = abx

for some x ∈ R. We know that a | ar2 and a | ab =⇒ a | br1. a | b are coprime so a | r1.
Symmetrically we have b | r2 So r1 ≡ 0 mod (a) and r2 ≡ 0 mod (b) so kerφ = {(0, 0)}.

Theorem. (Prime decomposition theorem) Let R be a Euclidean domain and M be a
finitely generated R-module. Then

M ∼= N1 ⊕ · · · ⊕Nt

where each Ni is either R or R/(pn) for some prime p.

Proof. We may write M ∼= R
(d1)
⊕· · ·⊕ R

(dr)
⊕R⊕· · ·⊕R. For each di write as a product of prime

powers and apply the previous proposition.

3.4 Modules over F and forms of matrices

Let V be a vector space over F and α ∈ End(V ) so α : V → V linear. We can make V into an
F[X]-module where

F[X]× V → V

(f(X), v)→ f(α)v.

For notation we’ll write Vα for this module.

Lemma. If dimV is finite then Vα is a finitely generated F[X]-module.

If we have a generating set for V as an F-module then they also generate Vα since F ≤ F[X].

For an example suppose that Vα
∼= F[X]/(Xr). As a vector space ove r F, Vα is spanned by

1, X,X2, . . . , Xr−1 which is a basis. As a matrix α i.e. multiplication by X is given by
0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .
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Similarly if we have Vα
∼= F[X]/(X − λ)r, for λ ∈ F, then write β : V → V as α− λ · id. Now by

the previous example β can be written in some basis as the matrix in the previous example. So
α can be written in some basis as 

λ 0 · · · 0 0
1 λ · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λ

 .

Now for another example, let p(X) = a0 + a1X + · · ·+ ar−1X
r−1 +Xr. Suppose that Vα is an

F[X] module and Vα
∼= F[X]/(p(X)). As a vector space over F we have dimF[X]/(p(X)) = r (in

particular both Vα and this as vector spaces over F are isomorphic to Fr). There is a basis for
F[X]/(p(X)) given by {1, X,X2, · · · , Xr−1}. The matrix α in this basis is

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −ar−1

 .

This is sometimes called the companion matrix for p(X).

Theorem. (Rational canonical form) Let V be a finite dimensional vector space over F
and let α ∈ End(V ) giving an F[X]-module Vα. Then

Vα
∼=

F[X]

(f1)
⊕ · · · ⊕ F[X]

(fs)

with f1 | f2 | · · · | fs and there exists a basis for V where α has block diagonal matrixc(f1)
. . .

c(fs)


where c(fi) is the companion matrix for fi.

Proof. Apply classification of modules over F[X] and the previous example.

Remark. In this rational canonical form, the minimal polynomial of α is fs and the characteristic
polynomial is

∏
i fi. This is beacuse f(α) acts by 0 on all direct summands. No smaller degree

polynomial than α acts by 0 on F[X]/(fs).

Lemma. The primes in C[X] are exactly (X − α) for α ∈ C.

Proof. Any constant is either a unit or 0 so not prime. Any quadratic or above has a root so not
irreducible. Clearly (X − α) are always prime since C[X]/(X − α) ∼= C which is a field.

Now for the final theorem! (woah)
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Theorem. (Jordan canonical form) Let V be a vector space over C and let α ∈ End(V ).
Then

Vα
∼=

C[X]

(X − λ1)a1
⊕ · · · ⊕ C[X]

(X − λt)at

and there is a basis where α is given by the matrixJa1
(λ1)

. . .

Jat
(λt)


where Ja(λ) is the a× a matrix given by

λ 0 · · · 0
1 λ · · · 0
...

...
. . .

...
0 · · · 1 λ


which is the Jordan canonical form.

Proof. Apply the prime decomposition theorem using the lemma above to Vα
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